反函数是( ) A. B. C. D. |
|
对于平面α和直线m、n,给出下列命题 ①若m∥n,则m、n与α所成的角相等; ②若m∥α,n∥α,则m∥n; ③若n⊥α,m⊥n,则m∥α; ④若m与n异面且m∥α,则n与α相交 其中真命题的个数是( ) A.1 B.2 C.3 D.4 |
|
已知α为第二象限的角,且,则=( ) A. B. C. D. |
|
已知向量与的夹角为120°,若向量,且⊥,则=( ) A.2 B. C. D. |
|
已知集合M={O,2,3,4},N={x|x=2a,a∈M},则集合M∩N=( ) A.{0} B.{0,2} C.{0,4} D.{2,4} |
|
已知k∈R,函数f(x)=mx+knx(0<m≠1,n≠1). (1)如果实数m,n满足m>1,mn=1,函数f(x)是否具有奇偶性?如果有,求出相应的k值,如果没有,说明为什么? (2)如果m>1>n>0判断函数f(x)的单调性; (3)如果m=2,n=,且k≠0,求函数y=f(x)的对称轴或对称中心. |
|
设数列{an}的前n项和为Sn,且满足Sn=2-an,n=1,2,3,…. (1)求数列{an}的通项公式; (2)若数列{bn}满足b1=1,且bn+1=bn+an,求数列{bn}的通项公式; (3)设cn=n (3-bn),求数列{cn}的前n项和为Tn. |
|
已知某种稀有矿石的价值y(单位:元)与其重量ω(单位:克)的平方成正比,且3克该种矿石的价值为54000元. (1)写出y(单位:元)关于ω单位:克)的函数关系式; (2)若把一块该种矿石切割成重量比为1:3的两块矿石,求价值损失的百分率; (3)把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大.(注:价值损失的百分率=×100%;在切割过程中的重量损耗忽略不计) |
|
已知椭圆中心在坐标原点,短轴长为2,一条准线l的方程为x=2. (1)求椭圆方程; (2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值. |
|
如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°. (1)求证:AC⊥平面BDE; (2)设点M是线段BD 上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论. |
|