某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( ) A. B. C. D. |
|
函数的图象是( ) A. B. C. D. |
|
函数f(x)=的值域为( ) A.[1,2] B.[] C.[) D.() |
|
若a>0,b>0,且点(a,b)在过点(1,-1)和(2,-3)的直线上,则S=2-4a2-b2的最大值为( ) A. B. C. D. |
|
同时具有性质“①最小正周期是π,②图象关于直线对称;③在上是增函数”的一个函数是( ) A. B. C. D. |
|
等差数列{an} 的前n项和为Sn,2a8=6+a11,则S9=( ) A.27 B.36 C.45 D.54 |
|
已知复数z=是实数,则 sin3θ=( ) A.0 B. C.1 D.-1 |
|
如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动. (1)当m=1时,求椭圆C2的方程; (2)当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值. |
|
设数列{an}为等比数列,数列{bn}满足bn=na1+(n-1)a2+…+2an-1+an,n∈N*,已知b1=m,,其中m≠0. (Ⅰ)求数列{an}的首项和公比; (Ⅱ)当m=1时,求bn; (Ⅲ)设Sn为数列{an}的前n项和,若对于任意的正整数n,都有Sn∈[1,3],求实数m的取值范围. |
|
某学校要建造一个面积为10000平方米的运动场.如图,运动场是由一个矩形ABCD和分别以AD、BC为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元. (1)设半圆的半径OA=r(米),试建立塑胶跑道面积S与r的函数关系S(r) (2)由于条件限制r∈[30,40],问当r取何值时,运动场造价最低?(精确到元) |
|