设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( ) A.1 B.3 C.4 D.8 |
|
函数的最小正周期是( ) A. B.π C.2π D.4π |
|
设函数,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0. (1)求y=f(x)的解析式; (2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值. |
|
已知A(-1,2)为抛物线C:y=2x2上的点,直线l1过点A,且与抛物线C相切,直线l2:x=a(a<-1)交抛物线C于点B,交直线l1于点D. (1)求直线l1的方程; (2)求△ABD的面积S1. |
|
已知f(x)=x2+2x•f′(1),则f′(0)= . | |
在平面直角坐标系xOy中,点P在曲线C:y=x3-10x+3上,且在第二象限内,已知曲线C在点P处的切线斜率为2,则点P的坐标为 . | |
设直线y=x+b是曲线y=lnx(x>0)的一条切线,则实数b的值为 . | |
曲线y=ex在点(2,e2)处的切线与坐标轴所围三角形的面积为( ) A.e2 B.2e2 C.e2 D. |
|
设f(x)=cosx,f1(x)=f′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2010(x)=( ) A.sin B.-sin C.cos D.-cos |
|
设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围是,则点P横坐标的取值范围是( ) A. B.[-1,0] C.[0,1] D. |
|