已知直线l与函数f(x)=lnx的图象相切于点(1,0),且l与函数(m<0)的图象也相切. (Ⅰ)求直线l的方程及m的值; (Ⅱ)若h(x)=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的最大值; (Ⅲ)当0<a<1时,求证:. |
|
已知二次函数f(x)=x2-ax+a(a>0,x∈R)有且只有一个零点,数列{an}的前n项和Sn=f(n)(n∈N*). (Ⅰ)求数列{an}的通项公式; (Ⅱ)设,定义所有满足cm•cm+1<0的正整数m的个数,称为这个数列{cn}的变号数,求数列{cn}的变号数. |
|
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=2. (Ⅰ)若D为AA1中点,求证:平面B1CD⊥平面B1C1D; (Ⅱ)在AA1上是否存在一点D,使得二面角B1-CD-C1的大小为60°. |
|
为了让更多的人参与2010年在上海举办的“世博会”,上海某旅游公司面向国内外发行总量为2000万张的旅游优惠卡,其中向境外人士发行的是世博金卡(简称金卡),向境内人士发行的是世博银卡(简称银卡).现有一个由36名游客组成的旅游团到上海参观旅游,其中是境外游客,其余是境内游客.在境外游客中有持金卡,在境内游客中有持银卡. (I)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率; (II)在该团的境内游客中随机采访3名游客,设其中持银卡人数为随机变量ξ,求ξ的分布列及数学期望Eξ. |
|
已知,,其中ω>0,若函数,且函数f(x)的图象与直线y=2相邻两公共点间的距离为π. (Ⅰ)求ω的值; (Ⅱ)在△ABC中,a、b、c分别是角A、B、C、的对边,且,f(A)=1,求△ABC的面积. |
|
过双曲线=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为 . | |
设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式的解集是 . | |
数列{an}满足,若,则a2004的值为 . | |
= . | |
已知方程x2+(1+a)x+1+a+b=0的两个实根x1,x2,满足0<x1<1<x2,则的取值范围是( ) A.(-2,0) B.(0,) C. D.(,0) |
|