若在行列式中,元素a的代数余子式的值是 . | |
已知方程b2x2-a2[k(x-b)]2-a2b2=0(b>a>0)的根大于a,则实数k满足( ) A. B. C. D. |
|
将正三棱柱截去三个角(如图1所示A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( ) A. B. C. D. |
|
若tan2α=m,则cotα-tanα=( ) A. B. C. D. |
|
设函数f(x)=2lg(2x-1),则f-1(0)的值为( ) A.0 B.1 C.10 D.不存在 |
|
设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值. (Ⅰ)若,求b3; (Ⅱ)若p=2,q=-1,求数列{bm}的前2m项和公式; (Ⅲ)是否存在p和q,使得bm=3m+2(m∈N*)?如果存在,求p和q的取值范围;如果不存在,请说明理由. |
|
已知双曲线=1(a>0,b>0)的离心率为,右准线方程为. (Ⅰ)求双曲线C的方程; (Ⅱ)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值. |
|
设函数f(x)=x3-3ax+b(a≠0). (Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值; (Ⅱ)求函数f(x)的单调区间与极值点. |
|
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min. (Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望. |
|
如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上. (1)求证:平面AEC⊥平面PDB; (2)当且E为PB的中点时,求AE与平面PDB所成的角的大小. |
|