已知A={1,3,5,7},B={2,3,4,5},则集合A∩B的子集的个数是( ) A.4 B.6 C.8 D.9 |
|
若x2+1=0(x∈C),则x=( ) A.±1 B.i C.-i D.±i |
|
己知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3). (Ⅰ)求C的离心率; (Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切. |
|
已知函数f(x)=-x2+ax+1-lnx. (Ⅰ)当a=3时,求函数f(x)的单调递增区间; (Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围. |
|
如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电源能通过T1,T2,T3的概率都是P,电源能通过T4的概率是0.9,电源能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999. (Ⅰ)求P; (Ⅱ)求电流能在M与N之间通过的概率. |
|
如图,直三棱柱ABC-A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1. (Ⅰ)证明:DE为异面直线AB1与CD的公垂线; (Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1-AC1-B1的大小. |
|
已知{an}是各项均为正数的等比数列a1+a2=2(),a3+a4+a5=64++) (Ⅰ)求{an}的通项公式; (Ⅱ)设bn=(an+)2,求数列{bn}的前n项和Tn. |
|
△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD. |
|
已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN= . | |
已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p= . | |