阅读右边的程序框图,若输出s的值为-7,则判断框内可填写( ) A.i<3 B.i<4 C.i<5 D.i<6 |
|
命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( ) A.若f(x)是偶函数,则f(-x)是偶函数 B.若f(x)不是奇函数,则f(-x)不是奇函数 C.若f(-x)是奇函数,则f(x)是奇函数 D.若f(-x)不是奇函数,则f(x)不是奇函数 |
|
函数f(x)=2x+3x的零点所在的一个区间是( ) A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2) |
|
i是虚数单位,复数=( ) A.1+i B.5+5i C.-5-5i D.-1-i |
|
已知函数f(x)=|x-2|,g(x)=-|x+3|+m. (1)解关于x的不等式f(x)+a-1>0(a∈R); (2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围. |
|
在平面直角坐标系xoy中,曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cosθ-4sinθ(ρ>0). (Ⅰ)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线; (Ⅱ)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程. |
|
如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,过点D作⊙O的切线交BC于E,AE交⊙O于点F. (1)证明:E是BC的中点; (2)证明:AD•AC=AE•AF. |
|
已知函数f(x)=klnx+(k-1)x. (Ⅰ)讨论函数f(x)的单调性; (Ⅱ)若函数f(x)存在最大值M,且M>0,求k的取值范围. |
|
如图,已知椭圆的中心在坐标原点,焦点在x轴上,它的一个顶点为A(0,),且离心率等于,过点M(0,2)且斜率为k的直线l与椭圆相交于P,Q不同两点(与点B不重合),椭圆与x轴的正半轴相交于点B. (Ⅰ)求椭圆的标准方程; (Ⅱ)若,求直线l的方程. |
|
某班主任老师对全班60名学生的性别与利用手机上网的情况进行调查,从中随机抽查一名学生,经计算发现,男生中喜欢手机上网的比不喜欢手机上网的概率大,而女生中则喜欢手机上网的比不喜欢手机上网的概率小. (Ⅰ)根据以上信息完成下面2×2列联表. (Ⅱ)根据以上信息你是否认为男生比女生更喜欢利用手机上网? 附:, |
|