在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为、、、,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手进入第三轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率; (Ⅲ)该选手在选拔过程中回答过的问题的个数记为X,求随机变量X的分布列和期望. |
|
已知α为锐角,且. (Ⅰ)求tanα的值; (Ⅱ)求的值. |
|
设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是 .如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是 . | |
已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则•最小值为 . | |
已知圆C的参数方程为(θ为参数),若P是圆C与y轴正半轴的交点,以原点为极点,x轴的正半轴为极轴建立极坐标系,求过点P的圆C的切线的极坐标方程. | |
圆C的极坐标方程p=2cosθ化为直角坐标方程为 ,该圆的面积为 . | |
设,且、夹角120°,则= . | |
若(a-2i)i=b-i,其中a,b∈R,i是虚数单位,则a+b= . | |
如图,平面α⊥平面β,α∩β=直线l,A,C是α内不同的两点,B,D是β内不同的两点,且A,B,C,D∉直线l,M,N分别是线段AB,CD的中点.下列判断正确的是( ) A.当|CD|=2|AB|时,M,N两点不可能重合 B.M,N两点可能重合,但此时直线AC与直线l不可能相交 C.当AB与CD相交,直线AC平行于l时,直线BD可以与l相交 D.当AB,CD是异面直线时,MN可能与l平行 |
|
已知平面区域Ω={(x,y)|},M={(x,y)|},向区域Ω内随机投一点P,点P落在区域M内的概率为( ) A. B. C. D. |
|