曲线y=ex在点(2,e2)处的切线与坐标轴所围三角形的面积为( ) A.e2 B.2e2 C.e2 D. |
|
以下四个数中的最大者是( ) A.(ln2)2 B.ln(ln2) C.ln D.ln2 |
|
下列说法错误的是( ) A.命题“若x2-4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2-4x+3≠0” B.“x>1”是“|x|>0”的充分不必要条件 C.若p且q为假命题,则p、q均为假命题 D.命题p:“∃x∈R使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0” |
|
设p:b2-4ac>0(a≠0),q:关于x的方程ax2+bx+c=0(a≠0)有实根,则p是q的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
|
若函数f(x)=x3(x∈R),则函数y=f(-x)在其定义域上是( ) A.单调递减的偶函数 B.单调递减的奇函数 C.单调递增的偶函数 D.单调递增的奇函数 |
|
函数的定义域为( ) A.(1,4) B.[1,4) C.(-∞,1)∪(4,+∞) D.(-∞,1]∪(4,+∞) |
|
一位游客欲参观上海世博会中甲、乙、丙这3个展览馆,又该游客参观甲、乙、丙这3个展览馆的概率分别是0.4,0.5,0.6,且是否参观哪个展览馆互不影响.设ξ表示该游客离开上海世博会时参观的展览馆数与没有参观的展览馆数之差的绝对值. (Ⅰ)求ξ的概率分布及数学期望; (Ⅱ)记“函数f(x)=x2-3ξx+1在区间[2,+∞)上单调递增”为事件A,求事件A的概率. |
|
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点. (1)求AC与PB所成的角余弦值; (2)求二面角A-MC-B的余弦值. |
|
如图,AB是⊙O的直径,C、F为⊙O上的点,且CA平分∠BAF,过点C作CD⊥AF交AF的延长线于点D.求证:DC是⊙O的切线. |
|
对于函数y=f(x),x∈(0,+∞),如果a,b,c是一个三角形的三边长,那么f(a),f(b),f(c)也是一个三角形的三边长,则称函数f(x)为“保三角形函数”. 对于函数y=g(x),x∈[0,+∞),如果a,b,c是任意的非负实数,都有g(a),g(b),g(c)是一个三角形的三边长,则称函数g(x)为“恒三角形函数”. (Ⅰ)判断三个函数“f1(x)=x,f2(x)=,f3(x)=3x2(定义域均为x∈(0,+∞))”中,哪些是“保三角形函数”?请说明理由; (Ⅱ)若函数,x∈[{0,+∞})是“恒三角形函数”,试求实数k的取值范围; (Ⅲ)如果函数h(x)是定义在(0,+∞)上的周期函数,且值域也为(0,+∞),试证明:h(x)既不是“恒三角形函数”,也不是“保三角形函数”. |
|