公差d≠0的等差数列{an}的前n项和为Sn,已知,. (Ⅰ)求数列{an}的通项公式an及其前n项和Sn; (Ⅱ)记,若自然数η1,η2,…,ηk,…满足1≤η1<η2<…<ηk<…,并且成等比数列,其中η1=1,η2=3,求ηk(用k表示); (Ⅲ)记,试问:在数列{cn}中是否存在三项cr,cs,ct(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由. |
|
如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为8且位于x轴上方的点. A到抛物线准线的距离等于10,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点). (Ⅰ)求抛物线C的方程; (Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标; (Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系. |
|
经市场调查,某商场的一种商品在过去的一个月内(以30天计)销售价格f(t)(元)与时间t(天)的函数关系近似满足(k为正常数),日销售量g(t)(件)与时间t(天)的函数关系近似满足g(t)=125-|t-25|,且第25天的销售金额为13000元. (Ⅰ)求k的值; (Ⅱ)试写出该商品的日销售金额w(t)关于时间t(1≤t≤30,t∈N)的函数关系式; (Ⅲ)该商品的日销售金额w(t)的最小值是多少? |
|
如图,在四棱锥P-ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ) 求证:EF∥平面PAD; (Ⅱ) 求证:EF⊥平面PDC. |
|
在△ABC中,已知角A,B所对的边分别为a,b,且a=25,b=39,. (Ⅰ)求sinB的值; (Ⅱ)求的值. |
|
已知f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=lnx-ax.若函数f(x)在其定义域上有且仅有四个不同的零点,则实数a的取值范围是______. |
|
在等差数列{an}中,若an>0,公差d>0,则有a4•a6>a3•a7.类比此性质,在等比数列{bn}中,若bn>0,公比q>1,可得b6,b7,b4,b9之间的一个不等关系为 . | |
过点作圆的弦,其中长度为整数的弦共有 条. | |
已知一个三棱锥的所有棱长均相等,且表面积为,则其体积为 . | |
已知命题①:函数y=2x-2-x为奇函数;命题②:函数y=x-在其定义域上是增函数;命题③:“a,b∈R,若ab=0,则a=0且b=0”的逆命题;命题④:已知a,b∈R,“a>b”是“a2>b2”成立的充分不必要条件.上述命题中,真命题的序号有 .(请把你认为正确命题的序号都填上) | |