相关试题
当前位置:首页 > 高中数学试题
设函数f(x)=xlnx(x>0).
(1)求函数f(x)的最小值;
(2)设F(x)=ax2+f′(x)(a∈R),讨论函数F(x)的单调性;
(3)斜率为k的直线与曲线y=f′(x)交于A(x1,y1)、B(x2,y2)(x1<x2)两点,求证:manfen5.com 满分网
如图,设F是椭圆manfen5.com 满分网的左焦点,直线l为左准线,直线l与x轴交于P点,MN为椭圆的长轴,已知manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点P作直线与椭圆交于A、B两点,求△ABF面积的最大值.

manfen5.com 满分网
已知函数f(x)=logkx(k为常数,k>0且k≠1),且数列{f(an)}是首项为4,
公差为2的等差数列.
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)若bn=an•f(an),当manfen5.com 满分网时,求数列{bn}的前n项和Sn
(III)若cn=anlgan,问是否存在实数k,使得{cn}中的每一项恒小于它后面的项?若存在,求出k的范围;若不存在,说明理由.
四棱锥P-ABCD中,PA⊥底面ABCD,且PA=AB=AD=manfen5.com 满分网,AB∥CD,∠ADC=90°.
(1)在侧棱PC上是否存在一点Q,使BQ∥平面PAD?证明你的结论;
(2)求证:平面PBC⊥平面PCD;
(3)求平面PAD与平面PBC所成锐二面角的余弦值.

manfen5.com 满分网
某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
版本人教A版人教B版苏教版北师大版
人数2015510
(1)从这50名教师中随机选出2名,求2人所使用版本相同的概率;
(2)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为ξ,求随机变量ξ的变分布列和数学期望.
设向量manfen5.com 满分网=(sinx,cosx),manfen5.com 满分网=(cosx,cosx),x∈R,函数f(x)=manfen5.com 满分网•(manfen5.com 满分网+manfen5.com 满分网).
(Ⅰ)求函数f(x)的最大值与最小正周期;
(Ⅱ)求使不等式f(x)≥manfen5.com 满分网成立的x的取值集.
如图,圆M与圆N交于A、B两点,以A为切点作两圆的切线分别交圆M和圆N于C、D两点,延长DB交圆M于点E,延长CB交圆N于点F,已知BC=5,BD=10,则AB=    manfen5.com 满分网=   
manfen5.com 满分网
设关于x的不等式|x|+|x-1|<a(a∈R).若a=2,则不等式的解集为     ;若不等式的解集为∅,则a的取值范围是    
若直线3x+4y+m=0与曲线manfen5.com 满分网(θ为参数)没有公共点,则实数m的取值范围是    
已知f(x)是R上的奇函数,f(1)=2,且对任意x∈R都有f(x+6)=f(x)+f(3)成立,则f(-3)=    ;f(2009)=   
共1028964条记录 当前(87753/102897) 首页 上一页 87748 87749 87750 87751 87752 87753 87754 87755 87756 87757 87758 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.