相关试题
当前位置:首页 > 高中数学试题
设x1,x2manfen5.com 满分网+x(a,b∈R,a>0)的两个极值点,f′(x)为f(x)的导函数.
(Ⅰ)如果x1<2<x2<4,求f′(-2)的取值范围;
(Ⅱ)如果0<x1<2,x2-x1=2,求证:manfen5.com 满分网
(Ⅲ)如果a≥2,且x2-x1=2,x∈(x1,x2)时,函数g(x)=-f′(x)+2(x2-x)的最大值为h(a),求h(a)的最小值.
如图,已知定圆C:x2+(y-3)2=4,定直线m:x+3y+6=0,过A(-1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.
(Ⅰ)当l与m垂直时,求证:l过圆心C;
(Ⅱ)当manfen5.com 满分网时,求直线l的方程;
(Ⅲ)设t=manfen5.com 满分网,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.

manfen5.com 满分网
甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.根据以往的统计数据,甲、乙射击环数的频率分布条形如图:
manfen5.com 满分网
若将频率视为概率,回答下列问题:
(Ⅰ)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率;
(Ⅱ)若甲、乙两运动员各自射击1次,ξ表示这2次射击中击中9环以上(含9环)的次数,求ξ的分
布列及数学期望Eξ.
如图,ABCD是边长为2a的正方形,ABEF是矩形,且二面角C-AB-F是直二面角,AF=a,G是EF的中点.
(Ⅰ)求证:平面AGC⊥平面BGC;
(Ⅱ)求GB与平面AGC所成角的大小;
(Ⅲ)求二面角B-AC-G的大小.

manfen5.com 满分网
在△ABC中,manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求cosC的值;
(Ⅱ)若manfen5.com 满分网,求manfen5.com 满分网
已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2an+1,Sn是数列{bn}的前n项和,求使Sn>42+4n成立的n的最小值.
已知f(x)是奇函数,且对定义域内任意自变量x满足f(1-x)=f(1+x),当x∈(0,1]时,f(x)=ex,则当x∈[-1,0)时,f(x)=    ,当x∈(4k,4k+1],k∈N*时,f(x)=   
已知正三棱锥P-ABC的四个顶点都在同一球面上,其中底面的三个顶点在该球的一个大圆上.若正三棱锥的高为1,则球的半径为    ,P,A两点的球面距离为   
关于函数manfen5.com 满分网,给出下列三个命题:
(1)函数f(x)在区间manfen5.com 满分网上是减函数;
(2)直线manfen5.com 满分网是函数f(x)的图象的一条对称轴;
(3)函数f(x)的图象可以由函数manfen5.com 满分网的图象向左平移manfen5.com 满分网而得到.
其中正确的命题序号是    .(将你认为正确的命题序号都填上)
如图,已知ABCDEF为正六边形,若以C,F为焦点的双曲线恰好经过A,B,D,E四点,则该双曲线的离心率为   
manfen5.com 满分网
共1028964条记录 当前(87795/102897) 首页 上一页 87790 87791 87792 87793 87794 87795 87796 87797 87798 87799 87800 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.