设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1,n=1,2,3,…. (1)求a1,a2; (2)猜想数列{Sn}的通项公式,并给出严格的证明. |
|
已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M. (I)证明为定值; (II)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值. |
|
设函数f(x)=(x+1)ln(x+1).若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围. |
|
如图,在直三棱柱ABC-A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点. (I)证明:ED为异面直线BB1与AC1的公垂线; (II)设,求二面角A1-AD-C1的大小. |
|
某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品. (1)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望; (2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率. |
|
已知向量,,. (1)若,求θ; (2)求的最大值. |
|
一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出 人. |
|
过点的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k= . | |
已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为 . | |
在的展开式中常数项为 (用数字作答). | |