学校为了调查高三学生在课外读物方面的支出情况,抽出了一个容n的样本,其频率分布直方图如图所示,其中支出在[80,90)元的同学有60人,则n的值为( ) A.200 B.2000 C.180 D.1800 |
|
如图,在边长为1的正六边形ABCDEF中,下列向量的数量积中最大的是( ) A. B. C. D. |
|
函数y=cos2x-sin2x的最小正周期是( ) A. B.π C.2π D.4π |
|
如果复数(m2+i)(1+mi)是实数,则实数m=( ) A.1 B.-1 C. D. |
|
在△ABC中,“A>B”是“cosA<cosB”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
|
某公司要将一批海鲜用汽车运往A地,如果能按约定日期送到,则公司可获得销售收入30万元,每提前一天送到,可多获得1万元,每迟到一天送到,将少获得1万元.为保证海鲜新鲜,汽车只能在约定日期的前两天出发,且行驶路线只能选择公路1或公路2中的一条,运费由公司承担,其他信息如表所示. (Ⅰ)记汽车走公路1时公司获得的毛利润为ξ(万元),求ξ的分布列和数学期望Eξ; (Ⅱ)假设你是公司的决策者,你选择哪条公路运送海鲜有可能获得的毛利润更多? (注:毛利润=销售收入-运费). |
|
甲、乙两人同时参加奥运志愿者选拔赛的考试,已知在备选的10道题中,甲能答对其中的6道题,乙能答对其中的8道题.规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2道题才能入选. (I)求甲答对试题数ξ的分布列及数学期望; (II)求甲、乙两人至少有一人入选的概率. |
|
某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金、对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为,且各车是否发生事故相互独立,求一年内该单位在此保险中: (1)获赔的概率; (2)获赔金额ξ的分别列与期望. |
|
从参加高三年级期中考试的学生中随机抽出40名学生,将其数学成绩(均为整数)分成六组[40,50),[50,60),…[90,100]后得到如下频率分布直方图. (Ⅰ)同一组数据用该组区间的中点值作为代表,据此估计本次考试的平均分; (Ⅱ)从上述40名学生中随机抽取2人,求这2人成绩都在[70,80)的概率; (Ⅲ)从上述40名学生中随机抽取2人,抽到的学生成绩在[40,60),记为0分,在[60,100],记为1分.用X表示抽取结束后的总记分,求X的分布列和数学期望. |
|
甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分. (Ⅰ)求随机变量ξ的分布列和数学期望; (Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB). |
|