在集合A={1,a2-a-1,a2-2a+2}中,a的值可以是( ) A.0 B.1 C.2 D.1或2 |
|
若全集U=R,集合M={x|-2≤x≤2},N={x|x2-3x≤0},则M∩(∁UN)=( ) A.[-2,0] B.[-2,0) C.[0,2] D.(0,2) |
|
下列函数,在其定义域内既是奇函数又是增函数的是( ) A.y=x+x3(x∈R) B.y=3x(x∈R) C.y=-log2x(x>0,x∈R) D.y=-(x∈R,x≠0) |
|
函数f(x)=•ax(a>1)图象的大致形状是( ) A. B. C. D. |
|
已知函数f(x)=|3x-2|+x (1)求函数f(x)的值域; (2)若g(x)=|x+1|,解不等式f(x)>g(x). |
|
已知圆锥曲线是参数)和定点,F1、F2是圆锥曲线的左、右焦点. (1)求经过点F2且垂直地于直线AF1的直线l的参数方程; (2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AF2的极坐标方程. |
|
如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC. (Ⅰ)求证:∠P=∠EDF; (Ⅱ)求证:CE•EB=EF•EP. |
|
设函数f(x)=ax+lnx,g(x)=a2x2; (1)当a=-1时,求函数y=f(x)图象上的点到直线x-y+3=0距离的最小值; (2)是否存在正实数a,使得不等式f(x)≤g(x)对一切正实数x都成立?若存在,求出a的取值范围;若不存在,请说明理由. |
|
设椭圆的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且. (Ⅰ)试求椭圆的方程; (Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值. |
|
(理科)某中学号召学生在2010年春节期间至少参加一次社会公益活动(下面简称为“活动”).该校合唱团共有100名学生,他们参加活动的次数统计如图所示. (I)求合唱团学生参加活动的人均次数; (II)从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率. (文科)先后抛掷一枚骰子两次,得到点数m,n,确定函数f(x)=x2+mx+n2,设函数f(x)有零点为事件A. (I)求事件A的概率P(A); (II)设函数g(x)=x2+12P(A)x-4的定义域为[-5,5],记“当x∈[-5,5]时,则g(x)≥0”为事件B,求事件B的概率P(B). |
|