设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式的解集为( ) A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1) C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1) |
|
若如图所给的程序运行结果为S=90,那么判断框中应填入的关于k的条件是( ) A.k=9 B.k<8 C.k≤8 D.k>8 |
|
等差数列{an}的通项公式是an=1-2n,其前n项和为Sn,则数列{}的前11项和为( ) A.-45 B.-50 C.-55 D.-66 |
|
已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为( ) A.3 B. C. D.2 |
|
若函数f(x)=a-x(a>0,a≠1)是定义域为R的增函数,则函数f(x)=loga(x+1)的图象大致是( ) A. B. C. D. |
|
已知函数y=Asin(ωx+φ)+k的最大值是4,最小值是0,最小正周期是,直线是其图象的一条对称轴,则下面各式中符合条件的解析式是( ) A. B. C. D. |
|
由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是( ) A.归纳推理 B.演绎推理 C.类比推理 D.其它推理 |
|
复数的共轭复数为( ) A.-i B.- C.1-2i D.1+2i |
|
已知I为实数集,M={x|x2-2x<0},N={x|y=},则M∩(∁1N)=( ) A.{x|0<x<1} B.{x|0<x<2} C.{x|x<1} D.φ |
|
已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设,Tn是数列{bn}的前n项和,求使得对所有n∈N*都成立的最小正整数m; |
|