已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b). (I)当a=1,b=2时,求曲线y=f(x)在点(2,f(x))处的切线方程; (II)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2. 证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后的等差数列,并求x4.
|
|
如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°.E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点. (Ⅰ)求证:BF∥平面A′DE; (Ⅱ)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.
|
|
设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0. (Ⅰ)若S5=5,求S6及a1; (Ⅱ)求d的取值范围.
|
|
在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足. (Ⅰ)求角C的大小; (Ⅱ)求sinA+sinB的最大值.
|
|
在平行四边形ABCD中,O是AC与BD的交点,P、Q、M、N分别是线段OA、OB、OC、OD的中点,在APMC中任取一点记为E,在B、Q、N、D中任取一点记为F,设G为满足向量的点,则在上述的点G组成的集合中的点,落在平行四边形ABCD外(不含边界)的概率为 .
|
|
某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7000万元,则x的最小值 .
|
|
若正实数x,y满足2x+y+6=xy,则xy的最小值是 .
|
|
在如下数表中,已知每行、每列中的树都成等差数列,那么,位于下表中的第n行第n+1列的数是 . | 第1列 | 第2列 | 第3列 | … | 第1行 | 1 | 2 | 3 | … | 第2行 | 2 | 4 | 6 | … | 第3行 | 3 | 6 | 9 | … | … | … | … | … | … |
|
|
函数的最小正周期是 .
|
|