在空间直角坐标系中,点(1,2,-1)与点(-1,0,-1)之间的距离为 .
在正方形SG1G2G3中,E、F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,在四面体S-EFG中必有( )
A.SG⊥△EFG所在平面 B.SD⊥△EFG所在平面 C.GF⊥△SEF所在平面 D.GD⊥△SEF所在平面 若实数x,y满足x2+y2-2x+4y=0,则x-2y的最大值为 ( )
A. B.10 C.0 D.5+2 设m、n是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确命题的序号是( )
①若m⊥α,n∥α,则m⊥n ②若α∥β,β∥γ,m⊥α,则m⊥γ ③若m∥α,n∥α,则m∥n ④若α⊥γ,β⊥γ,则α∥β A.①② B.②③ C.③④ D.①④ 如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是( )
A.x-2y=0 B.x+2y-4=0 C.2x+3y-12=0 D.x+2y-8=0 双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为( )
A. B. C. D. 如图是各条棱长均为2的正四面体的三视图,则正(主)视图三角形的面积为( )
A. B.2 C. D. 已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为( )
A.(x+2)2+(y-2)2=1 B.(x-2)2+(y+2)2=1 C.(x+2)2+(y+2)2=1 D.(x-2)2+(y-2)2=1 已知椭圆,长轴在y轴上,若焦距为4,则m等于( )
A.4 B.5 C.7 D.8 直线3x+y+1=0和直线6x+2y+1=0的位置关系是( )
A.重合 B.平行 C.垂直 D.相交但不垂直 直线x-y+3=0的倾斜角是( )
A.30° B.45° C.60° D.90° 如图,动点M与两定点A(-1,0)、B(1,0)构成△MAB,且直线MA、MB的斜率之积为4,设动点M的轨迹为C.
(Ⅰ)求轨迹C的方程; (Ⅱ)设直线y=x+m(m>0)与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求的取值范围. (理科)在平面直角坐标系中,F为抛物线C:x2=2py(p>0)的焦点,M为抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程; (2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M;若不存在,说明理由. (3)若点M的横坐标为2,直线l:y=kx+与抛物线C有两个不同的交点A、B,l与圆Q有两个不同的交点D、E,用含k的式子表示 AB2+DE2. 在正三棱柱ABC-A1B1C1中,点D是BC的中点,BC=BB1. (1)求证:A1C∥平面AB1D; (2)试在棱CC1上找一点M,使MB⊥AB1. 椭圆C的中心在坐标原点,焦点在x轴上,该椭圆经过点且离心率为.
(1)求椭圆C的标准方程; (2)若直线l:y=kx+m与椭圆C相交A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标. 如图,已知四棱锥P-ABCD的底面为菱形,PA=PC=2,PB=PD,∠BAC=60°,若O是AC与BD的交点.
(1)求证:PO⊥面ABCD; (2)若BC=2,OM⊥CD于M,求PM与面ABCD所成角的正切. 如图所示,正方体ABCD-A1B1C1D1中,M,E,F,N分别为A1B1,B1C1,C1D,D1A1的中点,求证:
(1)E,F,B,D,四点共面; (2)面MAN∥面EFDB. (1)求焦点为(0,-6),(0,6)且经过点(2,-5)的双曲线方程;
(2)正三角形的一个顶点位于抛物线y2=2px(p>0)的焦点,另外两个顶点在抛物线上,求正三角形的边长. 已知椭圆,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若= .
(文科)侧棱长为3的正三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=40°,过点A作截面AEF,则截面AEF周长的最小值为 .
(理科)若正四面体S-ABC的底面△ABC内有一动点P分别到面SAB,面SBC,面SAC的距离成等差数列,则点P的轨迹正确的是 ;
(1)一条线段 (2)一个点 (3)一段圆弧 (4)抛物线的一段. 已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,动圆与这两个圆都外切,则动圆圆心的轨迹方程为 .
如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于 .
椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=a,且a∈[,],则该椭圆离心率的取值范围为( )
A.[,1] B.[,] C.[,1) D.[,] 过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A,B两点,若AB的长为8,则P=( )
A.2 B.3 C.4 D. 如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,则下列结论中错误的是( )
A.AC⊥BE B.EF∥平面ABCD C.三棱锥A-BEF的体积为定值 D.△AEF的面积与△BEF的面积相等 设椭圆+=1与双曲线-y2=1有公共焦点为F1,F2,P是两条曲线的一个公共点,则cos∠F1PF2的值等于( )
A. B. C. D. 已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为( )
A.7 B.8 C.9 D.10 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为
( ) A. B.4 C. D.2 在空间,下列命题正确的是( )
A.平行直线的平行投影重合 B.平行于同一直线的两个平面平行 C.垂直于同一平面的两个平面平行 D.垂直于同一平面的两条直线平行 |