二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( ) A.-3 B.3 C.-6 D.9 |
|
已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=( ) A. B. C. D.2 |
|
不等式组的解集在数轴上表示正确的是( ) A. B. C. D. |
|
用配方法解一元二次方程x2-4x=5时,此方程可变形为( ) A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=9 D.(x-2)2=9 |
|
如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是( ) A.40° B.50° C.60° D.140° |
|
太阳的半径大约是696000千米,用科学记数法可表示为( ) A.696×103千米 B.69.6×104千米 C.6.96×105千米 D.6.96×106千米 |
|
-的倒数是( ) A.6 B.-6 C. D.- |
|
如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动. (1)求线段OA所在直线的函数解析式; (2)设抛物线顶点M的横坐标为m, ①用m的代数式表示点P的坐标; ②当m为何值时,线段PB最短; (3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由. |
|
如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A-B--C--E的方向运动,到点E停止;动点Q沿B--C--E--D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形) 解答下列问题: (1)当x=2s时,y=______cm2;当x=s时,y=______cm2. (2)当5≤x≤14 时,求y与x之间的函数关系式. (3)当动点P在线段BC上运动时,求出S梯形ABCD时x的值. (4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值. |
|
如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E. (1)判断直线DE与⊙O的位置关系,并说明理由; (2)若AE=8,⊙O的半径为5,求DE的长. |
|