选修4-4:坐标系与参数方程 在平面直角坐标系xOy中,直线l的参数方程为它与曲线C:(y-2)2-x2=1交于A、B两点. (1)求|AB|的长; (2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离. |
|
已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切. (Ⅰ)求椭圆C的方程; (Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于定点Q; (Ⅲ)在(Ⅱ)的条件下,过点Q的直线与椭圆C交于M,N两点,求的取值范围. |
|
已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数. (1)当a=-1时,求f(x)的最大值; (2)若f(x)在区间(0,e]上的最大值为-3,求a的值; (3)当a=-1时,试推断方程|f(x)|=是否有实数解. |
|
如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,,BC=6 (Ⅰ)求证:BD⊥平面PAC; (Ⅱ)求二面角P-BD-A的大小. |
|
在△ABC中,a,b,c分别是角A,B,C的对边,且. (I)求cosC的值; (II)若3ab=25-c2,求△ABC面积的最大值. |
|
设数列{an}满足a1+3a2+32a3+…+3n-1an=,n∈N*. (1)求数列{an}的通项; (2)设,求数列{bn}的前n项和Sn. |
|
①函数在[0,π]上是减函数; ②点A(1,1)、B(2,7)在直线3x-y=0两侧; ③数列{an}为递减的等差数列,a1+a5=0,设数列{an}的前n项和为Sn,则当n=4时,Sn取得最大值; ④定义运算则函数的图象在点处的切线方程是6x-3y-5=0. 其中正确命题的序号是 (把所有正确命题的序号都写上). |
|
设抛物线C:y2=16x的焦点为F,过点Q(-4,0)的直线l与抛物线C相交于A,B两点,若|QA|=2|QB|,则直线l的斜率k= . | |
设实数x,y满足约束条件,若目标函数z=+(a>0,b>0)的最大值为9,则d=的最小值为 . | |
已知向量,则等于 . | |