如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于( ) A. B. C. D. |
|
若奇函数f(x)在[1,3]上为增函数,且有最小值0,则它在[-3,-1]上( ) A.是减函数,有最小值0 B.是增函数,有最小值0 C.是减函数,有最大值0 D.是增函数,有最大值0 |
|
已知直线l、m、n 与平面α、β给出下列四个命题: ①若m∥l,n∥l,则m∥n; ②若m⊥α,m∥β,则α⊥β; ③若m∥α,n∥α,则m∥n; ④若m⊥β,α⊥β,则m∥α 其中,正确命题的个数是( ) A.1 B.2 C.3 D.4 |
|
学校为了了解高二年级1203名学生对某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为( ) A.40 B.30.1 C.30 D.12 |
|
函数y=的定义域为( ) A.{x|x≤1} B.{x|x≥1} C.{x|x≥1或x≤0} D.{x|0≤x≤1} |
|
在平面直角坐标系xoy 中,点M 到两定点F1(-1,0)和F2(1,0)的距离之和为4,设点M 的轨迹是曲线C. (1)求曲线C 的方程; (2)若直线l:y=kx+m 与曲线C 相交于不同两点A、B (A、B 不是曲线C 和坐标轴的交点),以AB 为直径的圆过点D(2,0),试判断直线l 是否经过一定点,若是,求出定点坐标;若不是,说明理由. |
|
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,). (1)求双曲线C的方程; (2)若点M(3,m)在双曲线上,求证:=0; (3)求△F1MF2的面积. |
|
命题p:关于x的不等式x2+2ax+4>0对于一切x∈R恒成立,命题q:∀x∈[1,2],x2-a≥0,若p∨q为真,p∧q为假.求实数a的取值范围. |
|
在等差数列{an}中,已知a6=10,S5=5,求a8和S8. |
|
已知a=3,c=2,B=150°,求边b的长及S△. |
|