已知集合A={x|x2-7x+6≤0,x∈N*},集合B={x||x-3|≤3.x∈N*},集合M={(x,y)|x∈A,y∈B} (1)求从集合M中任取一个元素是(3,5)的概率; (2)从集合M中任取一个元素,求x+y≥10的概率; (3)设ξ为随机变量,ξ=x+y,写出ξ的分布列,并求Eξ. |
|
(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且,AF:FB:BE=4:2:1,若CE与圆相切,则线段CE的长为 . |
|
在极坐标系中,圆ρ=-2sinθ的圆心的极坐标为 .(写出一个即可) | |
设函数f(x)=(x>0),观察: f1(x)=f(x)=, f2(x)=f(f1(x))=, f3(x)=f(f2(x))=, f4(x)=f(f3(x))=, … 根据以上事实,由归纳推理可得: 当n∈N*且n≥2时,fn(x)=f(fn-1(x))= . |
|
若点(a,9)在函数y=3x的图象上,则= . | |
已知f(x)=,则f(-8)= ,f(2013)= . | |
x(x-)7的展开式中,x4的系数是 (用数字作答) | |
已知集合A={x|y=},B={x|2x<4},则A∩B= . | |
对实数a与b,定义新运算“⊗”:设函数f(x)=(x2-2)⊗(x-x2),x∈R.若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是( ) A. B. C. D. |
|
下列命题中的假命题是( ) A.∃x∈R,lgx=0 B.∃x∈R,tanx=1 C.∀x∈R,x3>0 D.∀x∈R,2x>0 |
|