【解析图片】已知数列{an}与圆C1:x2+y2-2anx+2an+1y-1=0和圆C2:x2+y2+2x+2y-2=0,若圆C1与圆C2交于A,B两点且这两点平分圆C2的周长. (1)求证:数列{an}是等差数列; (2)若a1=-3,则当圆C1的半径最小时,求出圆C1的方程. |
|
如图,已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD绕CD旋转至 A′CD,使点A'与点B之间的距离A′B=. (1)求证:BA′⊥平面A′CD; (2)求二面角A′-CD-B的大小; (3)求异面直线A′C与BD所成的角的余弦值. |
|
如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1.圆O2的切线PM、PN(M.N分别为切点),使得PM=PN.试建立适当的坐标系,并求动点P的轨迹方程. |
|
如图,在正方体ABCD-A1B1C1D1中,E是棱BC的中点. (1)求证:BD1∥平面C1DE; (2)试在棱CC1上求一点,使得平面A1B1P⊥平面C1DE. |
|
已知P:方程x2+mx+1=0有两个不等的实数根,Q:方程4x2+4(m-2)x+1=0无实根.若P∨Q为真,P∧Q为假,求实数m的取值范围. |
|
已知△ABC的三个顶点是A(4,0),B(6,2),C(0,8) (1)求BC边上的高所在直线的方程; (2)求BC边上的中线所在直线的方程. |
|
过圆x2+y2=4外的一点A(4,0)作圆的割线,则割线被圆截得的弦的中点的轨迹方程为 . | |
四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其他四个侧面都是侧棱长为的等腰三角形,则二面角V-AB-C的平面角为 . |
|
已知直线L经过点P(-4,-3),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线L的方程是 . | |
如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的侧面积是 . | |