直角梯形ABCD如图1,动点P从点B出发,由B→C→D→A沿边运动,设点P运动的路程为x,△ABP的面积为f(x).如果函数y=f(x)的图象如图2所示,则△ABC的面积为( ) A.10 B.32 C.18 D.16 |
|
若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( ) A. B. C. D. |
|
要得到函数y=cos(2x+1)的图象,只要将函数y=cos2x 的图象( ) A.向左平移1个单位 B.向右平移1个单位 C.向左平移个单位 D.向右平移个单位 |
|
函数f(x)=ex+x-2的零点所在的一个区间是( ) A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2) |
|
“a>1”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
|
下列命题正确的是( ) A.存在实数x∈R,使sinx+cosx=成立. B.命题p:对任意的x∈R,x2+x+1>0;则¬P:对任意的x∈R,x2+x+1≤0 C.若p或q为假命题,则p,q均为假命题 D.若p且q为假命题,则p,q均为假命题 |
|
下列函数中,既是奇函数又是增函数的为( ) A.y=x+1 B.y=-x2 C. D.y=x3 |
|
已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁UA)∪B为( ) A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4} |
|
已知二次函数f(x)=ax2+bx+c. (1)设f(x)在[-2,2]上的最大值、最小值分别是M、m,集合{x|f(x)=x}={1},且a≥1,记h(a)=M+m,求h(d)的最小值. (2)当a=2,c=-1时, ①设A=[-1,1],不等式f(x)≤0的解集为C,且C⊆A,求实数b的取值范围; ②设g(x)=|x-t|-x2-bx(t∈R),求f(x)+g(x)的最小值. |
|
在平面直角坐标系xoy中,椭圆C:+=1(a>b>0)的右焦点为F(4m,0)(M>0,m为常数),离心率等于0.8,过焦点F、倾斜角为θ的直线l交椭圆C于M、N两点. (1)求椭圆C的标准方程; (2)若θ=90°时,+=,求实数m; (3)试问+的值是否与θ的大小无关,并证明你的结论. |
|