“φ=”是“函数y=sing(x+φ)为偶函数的”( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
|
已知集合A={-1,0,1},B={x︳1≤x<4},则A∩B等于( ) A.{1} B.{-1,1} C.{1,0} D.{-1,0,1} |
|
选修4-5;不等式选讲 已知函数f(x)=|2x-a|+a. (1)若不等式f(x)≤6的解集为{x|-2≤x≤3},求实数a的值; (2)在(1)的条件下,若存在实数n使f(n)≤m-f(-n)成立,求实数m的取值范围. |
|
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角. (I)写出直线l的参数方程是 (II)设l与圆ρ=2相交与两点A、B,求点P到A、B两点的距离之积是 . |
|
如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE. (1)求证:AG•EF=CE•GD; (2)求证:. |
|
设函数内有极值. (1)求实数a的取值范围; (2)若x1∈(0,1),x2∈(1,+∞),求证:. |
|
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.又设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E. (1)求椭圆C的方程; (2)证明:直线AE与x轴相交于定点Q; (3)求的取值范围. |
|
四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G,F分别是线段CE,PB上的动点,且满足. (1)求证:PG∥平面PDC; (2)求λ的值,使得二面角F-CD-G的余弦值为. |
|
某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:
(1)求数学辅导讲座在周一、周三、周五都不满座的概率; (2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望. |
|||||||||||||||||||||||||
已知函数f(x)=sinx+cosx,f′(x)是f(x)的导函数. (1)求函数F(x)=f(x)f′(x)+[f(x)]2的最大值和最小正周期; (2)若f(x)=2f'(x),求的值. |
|