已知函数. (Ⅰ)讨论函数f(x)的单调区间; (Ⅱ)若2xlnx≤2mx2-1在[1,e]恒成立,求m的取值范围. |
|
已知数列{an}的前n项和为Sn,且Sn=2an-2,(n=1,2,3…)数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上. (Ⅰ)求数列{an}和{bn}的通项公式; (Ⅱ)记Sn=a1b1+a2b2+…+anbn,求满足Sn<167的最大正整数n. |
|
如图,已知A、B、C是一条直路上的三点,AB与BC各等于1千米,从三点分别遥望塔M,在A处看见塔在北偏东45方向,在B处看见塔在正东方向,在C处看见塔在南偏东60°方向,求塔到直路ABC的最短距离. |
|
已知如图几何体,正方形ABCD和矩形ABEF所在平面互相垂直,AF=2AB=2AD,M为AF的中点,BN⊥CE. (Ⅰ)求证:CF∥平面BDM; (Ⅱ)求二面角M-BD-N的大小. |
|
已知函数. (Ⅰ)求f(x)的最小正周期; (Ⅱ)把f(x)的图象向右平移m个单位后,在是增函数,当|m|最小时,求m的值. |
|
下面的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为(n≥2),每个数是它下一行左右相邻两数的和,如,,,…,则第10行第3个数(从左往右数)为 . … |
|
设,则= . | |
已知,则的最大值是 . | |
如图,程序输出的结果是 . |
|
已知R上的不间断函数g(x)满足:①当x>0时,g′(x)>0恒成立;②对任意的x∈R都有g(x)=g(-x).又函数f(x)满足:对任意的x∈R,都有成立,当时,f(x)=x3-3x.若关于x的不等式g[f(x)]≤g(a2-a+2)对x∈[-3,3]恒成立,则a的取值范围( ) A.a≤0或a≥1 B.0≤a≤1 C.-1≤a≤1 D.a∈R |
|