若全集U=R,集合M={x|x2>4},N={x|x2-2x-3≤0}则M∩(CUN)等于( ) A.{x|x<-2} B.{x|x<-2或x>3} C.{x|x≥3} D.{x|-2≤x<3} |
|
已知函数f(x)=ln(x-1)-k(x-1)+1 (1)求函数f(x)的极值点. (2)若f(x)≤0恒成立,试确定实数k的取值范围. (3)证明:+…+(n∈N,n>1). |
|
已知函数f(x)=x3-ax2-3x(a∈R). (Ⅰ)若函数f(x)在区间[1,+∞)上为增函数,求实数a的取值范围; (Ⅱ)若是函数f(x)的极值点,求函数f(x)在区间[1,a]上的最大值; (Ⅲ)在(Ⅱ)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点?若存在,请求出b的取值范围;若不存在,试说明理由. |
|
设f(x)是定义在[-1,1]上的奇函数,且对任意a、b∈[-1,1],当a+b≠0时,都有>0. (1)若a>b,比较f(a)与f(b)的大小; (2)解不等式f(x-)<f(x-); (3)记P={x|y=f(x-c)},Q={x|y=f(x-c2)},且P∩Q=∅,求c的取值范围. |
|
设函数f(x)=2x+a•2-x-1(a为实数). (1)若a<0,用函数单调性定义证明:y=f(x)在(-∞,+∞)上是增函数; (2)若a=0,y=g(x)的图象与y=f(x)的图象关于直线y=x对称,求函数y=g(x)的解析式. |
|
设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数的值域,集合C为不等式的解集. (1)求A∩B; (2)若C⊆CRA,求a的取值范围. |
|
已知命题p:方程a2x2+ax-2=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0.若命题“p或q”是假命题,则a的取值范围是 . | |
已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)] ①若f(x)无零点,则g(x)>0对∀x∈R成立; ②若f(x)有且只有一个零点,则g(x)必有两个零点; ③若方程f(x)=0有两个不等实根,则方程g(x)=0不可能无解. 其中真命题的个数是 个. |
|
已知函数f(x)的值域[0,4](x∈[-2,2]),函数g(x)=ax-1,x∈[-2,2],∀x1∈[-2,2],总∃x∈[-2,2],使得g(x)=f(x1)成立,则实数a的取值范围是 . | |
已知函数在(2,+∞)上为增函数,则实数a的取值范围为 . | |