下列函数既是奇函数,又在区间[-1,1]上单调递减的是( ) A.f(x)=sin B.f(x)=-|x+1| C. D. |
|
函数的y=f(x)图象如图1所示,则函数y=的图象大致是( ) A. B. C. D. |
|
设,则a,b,c的大小关系是( ) A.a>c>b B.a>b>c C.c>a>b D.b>c>a |
|
函数y=sinx在点x=π处的导数是( ) A.-1 B.1 C.0 D.π |
|
的值为( ) A.0 B.2 C.2+2cos1 D.2-2cos1 |
|
命题“∀x∈R,x2-2x+3≤0”的否定是( ) A.∀x∈R,x2-2x+3≥0 B.∃x∈R,x2-2x+3>0 C.∀x∈R,x2-2x+3≤0 D.∃x∉R,x2-2x+3>0 |
|
集合M={a,b},N={a+1,3},a,b为实数,若M∩N={2},则M∪N=( ) A.{0,1,2} B.{0,1,3} C.{0,2,3} D.{1,2,3} |
|
已知集合M={m|m=in,n∈N},其中i2=-1,则下面属于M的元素是( ) A.(1-i)+(1+i) B.(1-i)(1+i) C. D.(1-i)2 |
|
已知函数f(x)=(x2-3x+3)•ex定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n. (Ⅰ)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数; (Ⅱ)求证:n>m; (Ⅲ)求证:对于任意的t>-2,总存x∈(-2,t),满足,并确定这样的x的个数. |
|
在平面直角坐标系xOy中,已知圆心在第二象限,半径为2的圆C与直线y=x相切于坐标原点O.椭圆=1与圆C的一个交点到椭圆两点的距离之和为10. (1)求圆C的方程; (2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由. |
|