要得到函数的导函数f′(x)的图象,只需将f(x)的图象( ) A.向左平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) B.向左平移个单位,再把各点的纵坐标缩短到原来的(横坐标不变) C.向左平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) D.向左平移个单位,再把各点的纵坐标缩短到原来的(横坐标不变) |
|
已知a>b>1,0<x<1,以下结论中成立的是( ) A. B.xa>xb C.logxa>logxb D.logax>logb |
|
等差数列{an}的前n项和Sn满足S20=S40,下列结论中一定正确的是( ) A.S30是Sn中的最大值 B.S30是Sn中的最小值 C.S30=0 D.S60=0 |
|
设满足,则f(n+4)=( ) A.2 B.-2 C.1 D.-1 |
|
设U={1,2,3,4},且M={x∈U|x2-5x+P=0},若∁UM={2,3},则实数P的值为( ) A.-4 B.4 C.-6 D.6 |
|
已知函数f(x)=x2,g(x)=x-1. (1)若∃x∈R使f(x)<b•g(x),求实数b的取值范围; (2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在[0,1]上单调递增,求实数m的取值范围. |
|
若函数y=f(x)是周期为2的偶函数,当x∈[2,3]时,f(x)=x-1.在y=f(x)的图象上有两点A、B,它们的纵坐标相等,横坐标都在区间[1,3]上,定点C的坐标为(0,a)(其中2<a<3), (1)求当x∈[1,2]时,f(x)的解析式; (2)定点C的坐标为(0,a)(其中2<a<3),求△ABC面积的最大值. |
|
“5•12”汶川大地震是华人心中永远的痛!在灾后重建中拟在矩形区域ABCD内建一矩形(与原方位一样)的汶川人民纪念广场(如图),另外AEF内部有一废墟作为文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m,如何设计才能使广场面积最大? |
|
已知函数y=f(x)= (a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<.试求函数f(x)的解析式. |
|
是否存在实数a,使函数为奇函数,同时使函数为偶函数,证明你的结论. |
|