下列对应法则f中,构成从集合A到集合B的映射是( ) A.A={x|x>0},B=R,f:x→y|y|=x2 B.A={-2,0,2},B={4}f:x→y=x2 C. D. |
|
已知a=log20.3,b=20.1,c=0.21.3,则a,b,c的大小关系是( ) A.a<b<c B.c<a<b C.a<c<b D.b<c<a |
|
若集合X={x|x>-1},下列关系式中成立的为( ) A.0⊆X B.{0}∈X C.∅∈X D.{0}⊆X |
|
设数列{an}是有穷等差数列,给出下面数表: a1 a2 a3 …an-1 an 第1行 a1+a2 a2+a3 …an-1+an 第2行 … … …第n行 上表共有n行,其中第1行的n个数为a1,a2,a3…an,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为b1,b2,b3…bn. (1)求证:数列b1,b2,b3…bn成等比数列; (2)若ak=2k-1(k=1,2,…,n),求和. |
|
已知x=是函数f(x)=的极值点. (Ⅰ)当b=1时,求函数f(x)的单调区间; (Ⅱ)当b∈R时,函数y=f(x)-m有两个零点,求实数m的取值范围. |
|
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点. (Ⅰ)求证:MN⊥平面A1BC; (Ⅱ)求直线BC1和平面A1BC所成角的大小. |
|
如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线. |
|
如图是一个正方体魔块(表面有颜色),将它掰开(沿图中各面的线),得到27棱长为1的小正方体,将这些小正方体充分混合后,装入一个口袋中. (1)从这个口袋中任意取出1个小正方体,这个小正方体的表面恰好没有颜色的概率为多少? (2)从这个口袋中同时任意取出2个小正方体,其中一个小正方体恰好有1个面涂有颜色,另一个小正方体至少有2个面涂有颜色的概率为多少? |
|
已知A,B,C三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα),其中. (1)若,求角α的值; (2)若,求的值. |
|
当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+N(3)+…+N(2n).则(1)S(4)= .(2)S(n)=. | |