设关于x的函数f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m为R上的常数,若函数f(x)在x=1处取得极大值0. (1)求实数m的值; (2)若函数f(x)的图象与直线y=k有两个交点,求实数k的取值范围; (3)设函数,若对任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,求实数p的取值范围. |
|
已知函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π. (Ⅰ)求f(x)的解析式; (Ⅱ)若,求的值. |
|
某电视生产厂家有A、B两种型号的电视机参加家电下乡活动.若厂家投放A、B型号电视机的价值分别为p、q万元,农民购买电视机获得的补贴分别为万元.已知厂家把总价值为10万元的A、B两种型号电视机投放电场,且A、B型号的电视机投放金额不低于1万元,请你制订一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值(精确到0.1,参考数据:ln4=1.4) |
|
已知向量=(,),=(cosx,sinx),x∈(0,). (1)若∥,求sinx和cos2x的值; (2)若=2cos(+x)(k∈Z),求tan(x+)的值. |
|
设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11). (Ⅰ)求a,b的值; (Ⅱ)讨论函数f(x)的单调性. |
|
已知△ABC的周长为+1,且sinA+sinB=sinC (I)求边AB的长; (Ⅱ)若△ABC的面积为sinC,求角C的度数. |
|
若函数y=f(x)(x∈R)满足f(x+2)=f(x)且x∈[-1,1]时,f(x)=1-x2,函数,则函数h(x)=f(x)-g(x)在区间[-5,5]内零点的个数有 个. | |
设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于 . | |
已知关于x的方程x2-(2m-8)x+m2-16=0的两个实根 x1、x2满足 x1<<x2,则实数m的取值范围 . | |
在△ABC中,边a上的高为h,且a=3h,则的最大值是 . | |