若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为( ) A.(0,0) B. C. D.(2,2) |
|
已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为( ) A.2 B.3 C.4 D.5 |
|
若抛物线y2=8x上一点P到其焦点的距离为9,则点P的坐标为( ) A.(7,±) B.(14,±) C.(7,±2) D.(7,±2) |
|
已知点A(-3,1,-4),则点A关于x轴的对称点的坐标为( ) A.(-3,-1,4) B.(-3,-1,-4) C.(3,1,4) D.(3,-1,-4) |
|
下列各组向量中不平行的是( ) A. B. C. D. |
|
已知椭圆上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为( ) A.9 B.7 C.5 D.3 |
|
若命题“p∧q”为假,且“¬p”为假,则( ) A.p或q为假 B.q假 C.q真 D.不能判断q的真假 |
|
设a,b,c是实数(a<b),m,n,p是正实数,函数f(x)=(x-a)(x-b); (1)证明方程f(x)=p有两个不等实数根; (2)设(1)中的方程的两根为α、β(α<β),试确定α、β、a、b四个数的大小关系; (3)设g(x)=f(x)(x-c)-(m+n+p)x+(am+bn+cp),对于(2)中的α、β请判断g(α)及g(β)的符号. |
|
已知数列{an}的前n项和为Sn=3n2+5n,在数列{bn}中,b1=8且64bn+1-bn=0,是否存在常数c,使对任意的正整数n,an+logcbn恒为常数m,若存在,求常数c和m的值,若不存在,说明理由. |
|
设命题p:函数的定义域为R,命题q:不等式,对一切正实数x恒成立,如果“p或q”为真,“p且q”为假;求实数a的取值范围. |
|