相关试题
当前位置:首页 > 高中数学试题
在△ABC中,a、b、c分别为角A、B、C的对边,设f(x)=a2x2-(a2-b2)x-4c2
(1)若manfen5.com 满分网,求角C的大小;
(2)若f(2)=0,求角C的取值范围.
如图,设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且manfen5.com 满分网,∠AOQ=α,α∈[0,π).
(Ⅰ)若点Q的坐标是manfen5.com 满分网,求manfen5.com 满分网的值;
(Ⅱ)设函数manfen5.com 满分网,求f(α)的值域.

manfen5.com 满分网
已知向量manfen5.com 满分网manfen5.com 满分网
(1)当manfen5.com 满分网时,求x的取值集合
(2)求函数manfen5.com 满分网的单调递增区间.
已知函数manfen5.com 满分网,x∈R.
(Ⅰ)求函数f(x)的最大值和最小值;
(Ⅱ)如图,函数f(x)在[-1,1]上的图象与x轴的交点从左到右分别为M、N,图象的最高点为P,求manfen5.com 满分网manfen5.com 满分网的夹角的余弦.

manfen5.com 满分网
已知函数f(x)=axlnx图象上点(e,f(e))处的切线方程与直线y=2x平行(其中e=2.71828…),g(x)=x2-tx-2.
(I)求函数f(x)的解析式;
(II)求函数f(x)在[n,n+2](n>0)上的最小值;
(III)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.
某学生对函数f(x)=2x•cosx的性质进行研究,得出如下的结论:
①函数f(x)在[-π,0]上单调递增,在[0,π]上单调递减;
②点manfen5.com 满分网是函数y=f(x)图象的一个对称中心;
③函数y=f(x)图象关于直线x=π对称;
④存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立.
其中正确的结论是   
已知命题p:关于x的不等式x2+(a-1)x+a2≤0的解集为Ø;命题q:函数y=(2a2-a)x为增函数,若函数“p∨q”为真命题,则实数a的取值范围是   
函数y=sinx的定义域为[a,b],值域为[-1,manfen5.com 满分网],则b-a的最小值为   
若命题p:∀x∈R,x2-1>0,则命题p的否定是    
共1028964条记录 当前(67971/102897) 首页 上一页 67966 67967 67968 67969 67970 67971 67972 67973 67974 67975 67976 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.