下列说法一定正确的是( ) A.一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况 B.一枚硬币掷一次得到正面的概率为,那么掷两次一定会出现一次正面 C.如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元 D.随机事件发生的概率与试验次数无关 |
|
用秦九韶算法求多项式f(x)=7x3+3x2-5x+11在x=23时的值,在运算过程中下列数值不会出现的是( ) A.164 B.3767 C.86652 D.85169 |
|
已知,则的值是( ) A. B. C.2 D.-2 |
|
在120个零件中,一级品24个,二级品36个,三级品60个.用系统抽样法从中抽取容量为20的样本、则每个个体被抽取到的概率是( ) A. B. C. D. |
|
如果角θ的终边经过点,那么tanθ的值是( ) A. B. C. D. |
|
在程序框图中,算法中间要处理数据或计算,可分别写在不同的( ) A.处理框内 B.判断框内 C.终端框内 D.输入输出框内 |
|
某热电厂积极推进节能减排工作,技术改造项目“循环冷却水系统”采用双曲线型冷却塔(如右图),以使得冷却器中排出的热水在其中冷却后可重复使用,从而实现热电系统循环水的零排放. (1)冷却塔的外形是双曲线的一部分绕其虚轴旋转所成的曲面,要求它的最小半径为12m,上口半径为13m,下口半径为20m,且双曲线的离心率为,试求冷却塔的高应当设计为多少? (2)该项目首次需投入资金4000万元,每年节能后可增加收入600万元.投入使用后第一年的维护费用为30万元,以后逐年递增20万元.为使年平均节能减排收益达到最大值,多少年后报废该套冷却塔系统比较适合? |
|
已知函数.定义函数f(x)与实数m的一种符号运算为m⊗f(x)=f(x)•[f(x+m)-f(x)]. (1)求使函数值f(x)大于0的x的取值范围; (2)若,求g(x)在区间[0,4]上的最大值与最小值. |
|
斜率为的直线l经过抛物线y2=2px的焦点F(1,0),且与抛物线相交于A、B两点. (1)求该抛物线的标准方程和准线方程; (2)求线段AB的长. |
|
某市在进行城市环境建设中,要把一个三角形的区域改造成市内公园.经过测量得到这个三角形区域的三条边长分别为70m、90m、120m. (1)求该三角形区域最大角的余弦值; (2)求该三角形区域的面积. |
|