在平面直角坐标系xOy中,线段AB与y轴交于点F(0,),直线AB的斜率为k,且满足|AF|•|BF|=1+k2. (1)证明:对任意的实数k,一定存在以y轴为对称轴且经过A、B、O三点的抛物线C,并求出抛物线C的方程; (2)对(1)中的抛物线C,若直线l:y=x+m(m>0)与其交于M、N两点,求∠MON的取值范围. |
|
已知函数f(x)= (1)当时,求f(x)的最大值; (2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由. |
|
古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n(n∈N*)个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用.现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题: (1)写出a1,a2,a3,并求出an; (2)记bn=an+1,求和(i,j∈N*);(其中表示所有的积bibj(1≤i≤j≤n)的和) 证明:≤++…+<(n∈N*). |
|
如图,设F是椭圆:(a>b>0)的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|. (1)求椭圆C的标准方程; (2)若过点P的直线与椭圆相交于不同两点A,B,求证:∠AFM=∠BFN; (3)(理)求三角形ABF面积的最大值. |
|
已知函数f(x)的导数f′(x)=3x2-3ax,f(0)=b.a,b为实数,1<a<2. (Ⅰ)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值; (Ⅱ)在(Ⅰ)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程; (Ⅲ)设函数F(x)=(f′(x)+6x+1)•e2x,试判断函数F(x)的极值点个数. |
|
已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(a为常数,a≠0,a≠1). (Ⅰ)求{an}的通项公式; (Ⅱ)设bn=an2+Sn•an,若数列{bn}为等比数列,求a的值; (Ⅲ)在满足条件(Ⅱ)的情形下,,数列{cn}的前n项和为Tn.求证:Tn>2n-. |
|
设A(x1,y1),B(x2,y2)是椭圆上的两点,已知向量=(,),=(,),若=0且椭圆的离心率e=,短轴长为2,O为坐标原点. (Ⅰ)求椭圆的方程; (Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. |
|
已知f(x)=ax-lnx,x∈(0,e)其中e是自然常数,a∈R. (1)讨论a=1时,f(x)的单调性、极值; (2)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由. |
|
函数的反函数为f-1(x),数列{an}和{bn}满足:,an+1=f-1(an),函数y=f-1(x)的图象在点(n,f-1(n))(n∈N*)处的切线在y轴上的截距为bn. (1)求数列{an}的通项公式; (2)若数列;的项中仅最小,求λ的取值范围; (3)令函数,0<x<1.数列{xn}满足:,0<xn<1且xn+1=g(xn),(其中n∈N*).证明:. |
|
已知线段,CD的中点为O,动点A满足AC+AD=2a(a为正常数). (1)建立适当的直角坐标系,求动点A所在的曲线方程; (2)若a=2,动点B满足BC+BD=4,且OA⊥OB,试求△AOB面积的最大值和最小值. |
|