公差不为零的等差数列{an}中,2a3-a72+2a11=0,数列{bn}是等比数列,且b7=a7则b6b8=( ) A.2 B.4 C.8 D.16 |
|
若b<a<0,则下列结论不正确的是( ) A.a2<b2 B.ab<b2 C. D.|a|-|b|=|a-b| |
|
设向量=(1,x-1),=(x+1,3),则“x=2”是“∥”的( ) A.充分但不必要条件 B.必要但不充分条件 C.充要条件 D.既不充分也不必要条件 |
|
已知集合,则M∩P=( ) A.{-1,0,1} B.{-1,0} C.{0,1} D.{1} |
|
将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2. (Ⅰ)若该硬币均匀,试求P1与P2; (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小. |
|
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN,M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系. (Ⅰ)证明:CM⊥SN; (Ⅱ)求SN与平面CMN所成角的大小. |
|
(选修4-4:坐标系与参数方程) 在直角坐标系xoy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为. (Ⅰ)求圆C的直角坐标方程; (Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为,求|PA|+|PB|. |
|
(选修4-2:矩阵与变换)(本小题满分10分) 求矩阵的逆矩阵. |
|
(已知函数f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,设t=logax+logxa. (Ⅰ)当x∈(1,a)∪(a,+∞)时,试将f(x)表示成t的函数h(t),并探究函数h(t)是否有极值; (Ⅱ)当k=4时,若对任意的x1∈(1,+∞),存在x2∈[1,2],使f(x1)≤g(x2),试求实数b的取值范围.. |
|
(已知工厂生产某种产品,次品率p与日产量x(万件)间的关系为,每生产1件合格产品盈利3元,每出现1件次品亏损1.5元. (I)将日盈利额y(万元)表示为日产量x(万件)的函数;(Ⅱ)为使日盈利额最大,日产量应为多少万件? | |