若a、b是任意实数,且a>b,则( ) A.a2>b2 B. C.lg(a-b)>0 D. |
|
数列{an}中a1=2,,{bn}中. (1)求证:数列{bn}为等比数列,并求出其通项公式; (2)当n≥3(n∈N*)时,证明:. |
|
已知点A(-2,0),B(2,0),动点P满足:∠APB=2θ,且|PA||PB|sin2θ=2. (1)求动点P的轨迹Q的方程; (2)过点B的直线l与轨迹Q交于两点M,N.试问在x轴上是否存在定点C,使得为常数.若存在,求出点C的坐标;若不存在,说明理由. |
|
已知 (1)若p>1时,解关于x的不等式f(x)≥0; (2)若f(x)>2对2≤x≤4时恒成立,求p的范围. |
|
已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R). (1)证明:不论m取什么实数时,直线l与圆恒交于两点; (2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程. |
|
已知在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足. (Ⅰ) 求Sn的表达式; (Ⅱ) 设,求数列{bn}的前n项和Tn. |
|
已知函数+cos2x+a(a∈R,a为常数). (I)求函数的最小正周期; (II)求函数的单调递减区间; (III)若时,f(x)的最小值为-2,求a的值. |
|
已知集合M={x|1≤x≤8,x∈N},对于它的非空子集A,将A中的每个元素k,都乘以(-1)k再求和,(如A={1,3,6},可求和得到(-1)1•1+(-1)3•3+(-1)6•6=2),则对M的所有非空子集,这些和的总和是 . | |
x、y满足约束条件:,则z=x+y-5的最小值是 . | |
设Sn为等差数列{an}的前n项和,若= . | |