相关试题
当前位置:首页 > 高中数学试题
直线a′⊂平面α,直线b′⊂平面α,且a′∥b′,其中a′,b′分别是直线a和直线b在平面α上的正投影,则直线a与直线b的位置关系是( )
A.平行或异面
B.相交或异面
C.相交、平行或异面
D.以上答案都不正确
函数manfen5.com 满分网的定义域为( )
A.(-4,-1)
B.(-4,1)
C.(-1,1)
D.(-1,1]
设U=R,A={x|x>0},B={x|x>1},则A∩∁UB=( )
A.{x|0≤x<1}
B.{x|0<x≤1}
C.{x|x<0}
D.{x|x>1}
已知中心在原点的椭圆的一个焦点为(0,manfen5.com 满分网),且过点manfen5.com 满分网,过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点B和点C.
(1)求椭圆的标准方程;
(2)求证:直线BC的斜率为定值,并求这个定值.
(3)求三角形ABC的面积最大值.
如图,抛物线顶点在原点,圆x2+y2=4x的圆心是抛物线的焦点,直线l过抛物线的焦点,且斜率为2,直线l交抛物线与圆依次为A、B、C、D四点.

(1)求抛物线的方程.
(2)求|AB|+|CD|的值.

manfen5.com 满分网
已知命题:“∀x∈x|-1≤x≤1,都有不等式x2-x-m<0成立”是真命题.
(1)求实数m的取值集合B; 
(2)设不等式(x-3a)(x-a-2)<0的解集为A,若x∈A是x∈B的充分不必要条件,求实数a的取值范围.
已知manfen5.com 满分网
(I)当manfen5.com 满分网时,解不等式f(x)≤0;
(II)若a>0,解关于x的不等式f(x)≤0.
数列{an}满足a1=1,manfen5.com 满分网(n∈N*).
(I)求证manfen5.com 满分网是等差数列;
(II)若manfen5.com 满分网,求n的取值范围.
设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列manfen5.com 满分网的前n项和,求Tn
如图,在面积为1的正△A1B1C1内作正△A2B2C2,使manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,依此类推,在正△A2B2C2内再作正△A3B3C3,….记正△AiBiCi的面积为ai(i=1,2,…,n),则a1+a2+…+an=   
manfen5.com 满分网
共1028964条记录 当前(70442/102897) 首页 上一页 70437 70438 70439 70440 70441 70442 70443 70444 70445 70446 70447 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.