设全集为U,若命题P:2010∈A∩B,则命题¬P是( ) A.2010∈A∪B B.2010∉A且2010∉B C.2010∈({C_U}A)∩({C_U}B) D.2010∈({C_U}A)∪({C_U}B) |
|
设数列{an}的前n项和为Sn,对一切n∈N*,点(n,Sn)在函数f(x)=x2+x的图象上. (1)求an的表达式; (2)设,使得不等式An<a对一切n∈N*都成立?若存在,求出a的取值范围;若不存在,请说明理由; (3)将数列{an}依次按1项,2项循环地分为(a1),(a2,a3),(a4),(a5,a6),(a7),(a8,a9),(a10), …,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b100的值; (4)如果将数列{an}依次按1项,2项,3项,4项循环;分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},提出同(3)类似的问题((3)应当作为特例),并进行研究,你能得到什么样的结论? |
|
国际上常用恩格尔系数(记作n)来衡量一个国家和地区人民生活水平的状况,它的计算公式为:,各种类型家庭的n如下表所示:
(1)若2002年底该市城区家庭刚达到小康,且该年每户家庭消费支出总额9600元,问2007年底能否达到富裕?请说明理由. (2)若2007年比2002年的消费支出总额增加36%,其中食品消费支出总额增加12%,问从哪一年底起能达到富裕?请说明理由. |
|||||||||||||
如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1. (1)求直线AE与平面CDE所成角的大小(用反三角函数值表示); (2)求多面体ABCDE的体积. |
|
杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角: (1)求第20行中从左到右的第4个数; (2)若第n行中从左到右第14与第15个数的比为,求n的值; (3)求n阶(包括0阶)杨辉三角的所有数的和; (4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m、k(m,k∈N×)的数学公式表示上述结论,并给予证明.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
设△ABC的内角∠A、∠B、∠C所对的边长分别为a、b、c,且a2+b2-c2=2absin2C,求角C的大小. |
|
为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为aa1a2,ai∈{0,1}(i=0,1,2),传输信息为haa1a2h1,其中h=a⊕a1,h1=h⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( ) A.11010 B.01100 C.10111 D.00011 |
|
若数列为( ) A.递增数列 B.递减数列 C.从某项后为递减 D.从某项后为递增 |
|
已知m,n为不同的直线,α,β为不同的平面,下列四个命题中,正确的是( ) A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,且m∥β,n∥β,则α∥β C.若α⊥β,m⊂α,则m⊥β D.若α⊥β,m⊥β,m⊄α,则m∥α |
|
下列四个函数中,图象如图所示的只能是( ) A.y=x+lg B.y=x-lg C.y=-x+lg D.y=-x-lg |
|