设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x•]上单调递增,在[x•,1]单调递减,则称f(x)为[0,1]上的单峰函数,x•为峰点,包含峰点的区间为含峰区间. 对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法. (Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间; (Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+r; (Ⅲ)选取x1,x2∈(0,1),x1<x2由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34. (区间长度等于区间的右端点与左端点之差). |
|
已知平面上一定点C(-1,0)和一定直线l:x=-4.P为该平面上一动点,作PQ⊥l,垂足为Q,. (1)问点P在什么曲线上,并求出该曲线方程; (2)点O是坐标原点,A、B两点在点P的轨迹上,若,求λ的取值范围. |
|
设f(x)=(a≠0),令a1=1,an+1=f(an),又bn=an•an+1,n∈N* (1)判断数列{}是等差数列还是等比数列并证明; (2)求数列{an}的通项公式; (3)求数列{bn}的前n项和. |
|
已知长方体AC1中,棱AB=BC=1,棱BB1=2,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F. (1)求证:A1C⊥平面EBD; (2)求点A到平面A1B1C的距离; (3)求平面A1B1C与直线DE所成角的正弦值. |
|
设函数f(x)=ax-(a+1)ln(x+1),其中a≥-1,求f(x)的单调区间. |
|
在△ABC中,已知. (1)求证:||=||; (2)若||=2,,求||. |
|
数列{an}是正项等差数列,若,则数列{bn}也为等差数列,类比上述结论,写出正项等比数列{cn},若dn= 则数列{dn}也为等比数列. | |
定义运算a*b=,例如,1*2=1,则函数f(x)=x2*(1-|x|)的最大值为 . | |
将抛物线y=x2的图象按平移后,抛物线与直线2x-y+c=0相切,则c= . | |
甲、乙两人同时从学校去县城开会,已知甲以速度a走了一半时间,另一半时间的速度是b,乙用速度a走了一半路程,另一半路程的速度是b,a≠b,则甲、乙两人先到达县城的是 . | |