已知直线l⊥平面α,直线m⊂平面β,给出下列命题 ①α∥β=l⊥m; ②α⊥β⇒l∥m; ③l∥m⇒α⊥β; ④l⊥m⇒α∥β. 其中正确命题的序号是( ) A.①②③ B.②③④ C.①③ D.②④ |
|
若不等式组表示的平面区域是一个三角形,则a的取值范围是( ) A.a<5 B.a≥7 C.5≤a<7 D.a<5或a≥7 |
|
如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的侧面积为( ) A.6 B.24 C.12 D.32 |
|
如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是( ) A.65 B.64 C.63 D.62 |
|
经过圆C:(x+1)2+(y-2)2=4的圆心且斜率为1的直线方程为( ) A.x-y+3=0 B.x-y-3=0 C.x+y-1=0 D.x+y+3=0 |
|
已知向量,,且,则实数x的值为( ) A. B.-2 C.2 D. |
|
在等比数列{an}中,已知a1=1,a4=8,则a5=( ) A.16 B.16或-16 C.32 D.32或-32 |
|
已知i为虚数单位,则(1+i)(1-i)=( ) A.0 B.1 C.2 D.2i |
|
对负实数a,数4a+3,7a+7,a2+8a+3依次成等差数列 (1)求a的值; (2)若数列{an}满足an+1=an+1-2an(n∈N+),a1=m,求an的通项公式; (3)在(2)的条件下,若对任意n∈N+,不等式a2n+1<a2n-1恒成立,求m的取值范围. |
|
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=23,a5+b3=17. (Ⅰ)求{an},{bn}的通项公式; (Ⅱ)设cn=anbn,求数列{cn}的前n项和Sn. |
|