已知圆C:x2+y2+2x-4y+3=0. (1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程; (2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
|
|
如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点. (1)求证:EF∥平面ABC1D1; (2)求证:EF⊥B1C; (3)求三棱锥的体积.
|
|
设Sn是等差数列{an}的前n项和,若以点O(0,0)、A(l,Sl)、B(m,Sm)、C(p,Sp)为顶点的四边形(其中l<m<n),AB∥OC,则之间的等量关系式经化简后为 .
|
|
在计算机的算法语言中有一种函数[x]叫做取整函数(也称高斯函数),它表示x的整数部分,即[x]是不超过x的最大整数.例如:[2]=2,[3.1]=3,[-2.6]=-3.设函数,则函数y=[f(x)]+[f(-x)]的值域为 .
|
|
在约束条件下,当3≤s≤5时,目标函数z=3x+2y的最大值的变化范围是 .
|
|
在△ABC中,若AB⊥AC,AC=b,BC=a,则△ABC的外接圆半径,将此结论拓展到空间,可得出的正确结论是:在四面体S-ABC中,若SA、SB、SC两两垂直,SA=a,SB=b,SC=c,则四面体S-ABC的外接球半径R= .
|
|
一个空间几何体的正视图、侧视图、俯视图都为全等的等腰直角三角形(如图所示),如果直角三角形的直角边长为1,那么这个几何体的体积为 .
|
|
若z∈C且|z+2-2i|=1,则|z-1+2i|的最小值是 .
|
|
(文)若抛物线y2=2px的焦点与椭圆的右焦点重合,则实数p的值是 .
|
|