设f(x)是定义在R上的奇函数,且当x>0时,f(x)=lg(x2-x),则f(-2)=( ) A. B.lg2 C.2lg2 D.lg6 |
|
函数的定义域是( ) A.{x|x>6} B.{x|-3<x<6} C.{x|x>-3} D.{x|-3≤x<6} |
|
若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的( ) A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 |
|
如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1. (Ⅰ)求BF的长; (Ⅱ)求点C到平面AEC1F的距离. |
|
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1. (I)证明PA⊥平面ABCD; (II)求以AC为棱,EAC与DAC为面的二面角θ的大小; (Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论. |
|
如图,在正三棱柱ABC-A1B1C1中,AB=2,AA1=2,由顶点B沿棱柱侧面经过棱AA1到顶点C1的最短路线与AA1的交点记为M,求: (I)三棱柱的侧面展开图的对角线长 (II)该最短路线的长及的值 (III)平面C1MB与平面ABC所成二面角(锐角)的大小 |
|
如图,M是抛物线上y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB. (1)若M为定点,证明:直线EF的斜率为定值; (2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程. |
|
已知双曲线C1和椭圆C2:有公共的焦点,它们的离心率分别是e1和e2,且,求双曲线C1的方程. |
|
设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内 (1)只有一个盒子空着,共有多少种投放方法? (2)没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法? (3)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法? |
|
正方形ABCD的两对角线AC与BD交于O,沿对角线BD折起,使∠AOC=90°对于下列结论:①AC⊥BD;②△ADC是正三角形;③AB与CD成60°角;④AB与平面BCD成60°角,其中正确的结论是 . | |