相关试题
当前位置:首页 > 高中数学试题
设f(x)是定义在R上的奇函数,且当x>0时,f(x)=lg(x2-x),则f(-2)=( )
A.manfen5.com 满分网
B.lg2
C.2lg2
D.lg6
函数manfen5.com 满分网的定义域是( )
A.{x|x>6}
B.{x|-3<x<6}
C.{x|x>-3}
D.{x|-3≤x<6}
若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的( )
A.充要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
manfen5.com 满分网如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.
(Ⅰ)求BF的长;
(Ⅱ)求点C到平面AEC1F的距离.
manfen5.com 满分网如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=manfen5.com 满分网,点E在PD上,且PE:ED=2:1.
(I)证明PA⊥平面ABCD;
(II)求以AC为棱,EAC与DAC为面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
如图,在正三棱柱ABC-A1B1C1中,AB=2,AA1=2,由顶点B沿棱柱侧面经过棱AA1到顶点C1的最短路线与AA1的交点记为M,求:
(I)三棱柱的侧面展开图的对角线长
(II)该最短路线的长及manfen5.com 满分网的值
(III)平面C1MB与平面ABC所成二面角(锐角)的大小

manfen5.com 满分网
如图,M是抛物线上y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.
(1)若M为定点,证明:直线EF的斜率为定值;
(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.

manfen5.com 满分网
已知双曲线C1和椭圆C2manfen5.com 满分网有公共的焦点,它们的离心率分别是e1和e2,且manfen5.com 满分网,求双曲线C1的方程.
设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内
(1)只有一个盒子空着,共有多少种投放方法?
(2)没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?
(3)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?
正方形ABCD的两对角线AC与BD交于O,沿对角线BD折起,使∠AOC=90°对于下列结论:①AC⊥BD;②△ADC是正三角形;③AB与CD成60°角;④AB与平面BCD成60°角,其中正确的结论是   
共1028964条记录 当前(70988/102897) 首页 上一页 70983 70984 70985 70986 70987 70988 70989 70990 70991 70992 70993 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.