相关试题
当前位置:首页 > 高中数学试题
给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.
其中,为真命题的是( )
A.①和②
B.②和③
C.③和④
D.②和④
在△ABC中,如果manfen5.com 满分网,B=30°,那么角A等于( )
A.30°
B.45°
C.60°
D.120°
manfen5.com 满分网”是“函数y=sin2x取得最大值”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
在平面直角坐标系中,若点(-2,t)在直线x-2y+4=0的上方,则t的取值范围是( )
A.(-∞,1)
B.(1,+∞)
C.(-1,+∞)
D.(0,1)
下列四个命题中的真命题为( )
A.∃x∈Z,1<4x<3
B.∃x∈Z,5x+1=0
C.∀x∈R,x2-1=0
D.∀x∈R,x2+x+2>0
在等比数列an中,若a4=8,q=-2,则a7的值为( )
A.-64
B.64
C.-48
D.48
已知圆C:x2+y2-2x+4y-4=0;
(1)若直线l过P(-2,2)且与圆C相切,求直线l的方程.
(2)是否存在斜率为1直线l′,使直线l′被圆C截得弦AB,以AB为直径的圆经过原点O.若存在,求出直线l′的方程;若不存在,说明理由.
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC.
(1)求证:平面ABFE⊥平面DCFE;
(2)求四面体B-DEF的体积.

manfen5.com 满分网
已知圆C上一点A(2,3),直线2x+y=0平分圆C,且圆C与直线x-y+1=0相交的弦长为manfen5.com 满分网,求圆C的方程.
如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB=manfen5.com 满分网,CE=EF=1,∠ECA=60°.
(1)求证:AF∥平面BDE;
(2)求异面直线AB与DE所成角的余弦值.

manfen5.com 满分网
共1028964条记录 当前(71570/102897) 首页 上一页 71565 71566 71567 71568 71569 71570 71571 71572 71573 71574 71575 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.