如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是 . | |
若椭圆的离心率为,则m= . | |
如图,从双曲线的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|与b-a的大小关系为( ) A.|MO|-|MT|>b-a B.|MO|-|MT|<b-a C.|MO|-|MT|=b-a D.以上三种可能都有 |
|
已知四面体A-BCD的棱长均为2,其正视图是边长为2的等边三角形(如图,其中BC为水平线),则其侧视图的面积是( ) A. B. C. D. |
|
点P是抛物线y2=4x上一动点,则点P到点A(0,-1)的距离与到直线x=-1的距离和的最小值是( ) A. B. C.2 D. |
|
椭圆的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则P到F2的距离为( ) A. B. C. D.4 |
|
与双曲线有共同的渐近线,且经过点的双曲线的方程为( ) A. B. C. D. |
|
已知α、β是两个不同平面,m、n是两不同直线,下列命题中的假命题是( ) A.若m∥n,m⊥α,则n⊥α B.若m∥α,α∩β=n,则m∥n C.若m⊥α,m⊥β,则α∥β D.若m⊥α,m⊂β,则α⊥β |
|
命题:“若a2+b2=0(a,b∈R),则a=b=0”的逆否命题是( ) A.若a≠b≠0(a,b∈R),则a2+b2≠0 B.若a=b≠0(a,b∈R),则a2+b2≠0 C.若a≠0且b≠0(a,b∈R),则a2+b2≠0 D.若a≠0或b≠0(a,b∈R),则a2+b2≠0 |
|
平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B为焦点的椭圆”,那么( ) A.甲是乙成立的充分不必要条件 B.甲是乙成立的必要不充分条件 C.甲是乙成立的充要条件 D.甲是乙成立的非充分非必要条件 |
|