如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为( ) A. B. C. D. |
|
已知条件p:1≤x≤4,条件q:|x-2|>1,则p是¬q的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
|
设z=1+i(i是虚数单位),则=( ) A.-1-i B.-1+i C.1-i D.1+i |
|
设U=R,A={x|x>0},B={x|x>1},则A∩∁UB=( ) A.{x|0≤x<1} B.{x|0<x≤1} C.{x|x<0} D.{x|x>1} |
|
已知函数f(x)=x3-3|x-a|+λ•sin,其中a,λ∈R; (1)当a=0时,求f(1)的值并判断函数f(x)的奇偶性; (2)当a=0时,若函数y=f(x)的图象在x=1处的切线经过坐标原点,求λ的值; (3)当λ=0时,求函数f(x)在[0,2]上的最小值. |
|
(1)如图1所示,请证明抛物线的一个几何性质:过抛物线y2=4x的焦点F任作直线l与抛物线交于A,B两点,则在x轴上存在定点M(-1,0),使直线MF始终是∠AMB的平分线; (2)如图2所示,对于椭圆,设它的左焦点为F;请写出一个类似地性质;并证明其真假. |
|
已知, (1)求函数y=f(x)(0<x<π)的单调递增区间; (2)设△ABC的内角A满足f(A)=2,而,求BC边上的高AD长的最大值. |
|
在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,点E在棱CC1上,点F是棱C1D1的中点. (I)若点E是棱CC1的中点,求证:EF∥平面A1BD; (II)试确定点E的位置,使得A1-BD-E为直二面角,并说明理由. |
|
某射击小组有甲、乙两名射手,甲的命中率为,乙的命中率为P2,在射击比武活动中每人射击发两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”; (1)若,求该小组在一次检测中荣获“先进和谐组”的概率; (2)计划在2011年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数ξ,如果Eξ≥5,求P2的取值范围. |
|
设点列An(xn,0)、Pn(xn,2n-1)和抛物线列(n∈N*),xn由以下方法得到:点Pn+1(xn+1,2n)在抛物线上,点An(xn,0)到Pn+1的距离是An到Cn上点的最短距离;试写出xn+1和xn之间的递推关系式为xn+1= (用xn表示). | |