若集合A={x||x|≤4},集合B={x|4≤x<5},则A与B的交集是( ) A.{4} B.{x|4≤x<5} C.{4,5} D.{x|-4≤x<5} |
|
选修4-5:不等式选讲 设函数f(x)=|x-1|+|x-a|(a∈R) (1)当a=4时,求不等式f(x)≥5的解集; (2)若f(x)≥4对x∈R恒成立,求a的取值范围. |
|
在平面直角坐标系xoy中,曲线C1的参数方程为 (a>b>0,ϕ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点M(1,)对应的参数φ=,曲线C2过点D(1,). (I)求曲线C1,C2的直角坐标方程; (II)若点A( ρ 1,θ ),B( ρ 2,θ+) 在曲线C1上,求的值. |
|
如图,A,B,C,D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上. (Ⅰ)若,求的值; (Ⅱ)若EF2=FA•FB,证明:EF∥CD. |
|
已知点是离心率为的椭圆C:上的一点.斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合. (Ⅰ)求椭圆C的方程; (Ⅱ)△ABD的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由? |
|
已知函数f(x)=x2-8lnx,g(x)=-x2+14x. (Ⅰ)若函数y=f(x)和函数y=g(x)在区间(a,a+1)上均为增函数,求实数a的取值范围; (Ⅱ)若方程f(x)=g(x)+m有唯一解,求实数m的值. |
|
口袋里装有4个大小相同的小球,其中两个标有数字1,两个标有数字2. (Ⅰ) 第一次从口袋里任意取一球,放回口袋里后第二次再任意取一球,记第一次与第二次取到小球上的数字之和为ξ.当ξ为何值时,其发生的概率最大?说明理由; (Ⅱ) 第一次从口袋里任意取一球,不再放回口袋里,第二次再任意取一球,记第一次与第二次取到小球上的数字之和为η.求η大于2的概率. |
|
如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分别是棱CC1、AB中点. (1)判断直线CF和平面AEB1的位置关系,并加以证明; (2)求四棱锥A-ECBB1的体积. |
|
等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6, (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{}的前n项和. |
|
在△ABC中,角A、B、C所对的边分别为a、b、c,且,当tan(A-B)取最大值时,角C的值为 . | |