相关试题
当前位置:首页 > 高中数学试题
在极坐标中,过点(2,0)并且与极轴垂直的直线方程是( )
A.ρ=2cosθ
B.ρ=2sinθ
C.ρcosθ=2
D.ρsinθ2
若集合manfen5.com 满分网,则“x∈A∩B”是“x∈C”的( )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
已知向量manfen5.com 满分网manfen5.com 满分网满足|manfen5.com 满分网|=1,|manfen5.com 满分网|=4,且manfen5.com 满分网,则manfen5.com 满分网manfen5.com 满分网夹角为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知i是虚数单位,若manfen5.com 满分网,则a+b的值是( )
A.0
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
设函数manfen5.com 满分网R),函数f(x)的导数记为f'(x).
(1)若a=f'(2),b=f'(1),c=f'(0),求a、b、c的值;
(2)在(1)的条件下,记manfen5.com 满分网,求证:F(1)+F(2)+F(3)+…+F(n)<manfen5.com 满分网N*);
(3)设关于x的方程f'(x)=0的两个实数根为α、β,且1<α<β<2.试问:是否存在正整数n,使得manfen5.com 满分网?说明理由.
某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(Ⅰ)若建立函数模型制定奖励方案,试用数学语言表述公司对奖励函数模型的基本要求;
(Ⅱ)现有两个奖励函数模型:(1)y=manfen5.com 满分网;(2)y=4lgx-3.试分析这两个函数模型是否符合公司要求?
设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网,(a>b>0)上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),且manfen5.com 满分网,若椭圆的离心率manfen5.com 满分网,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
如图,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF=90°,BE∥CF,CE⊥EF,AD=manfen5.com 满分网,EF=2.
(1)求异面直线AD与EF所成的角;
(2)当二面角D-EF-B的大小为45°时,求二面角A-EC-F的大小.

manfen5.com 满分网
在一次数学考试中,共有10道选择题,每题均有四个选项,其中有且只有一个选项是正确的,评分标准规定:“每道题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有6道题是正确的,其余题目中:有两道题可判断两个选项是错误的,有一道可判断一个选项是错误的,还有一道因不理解题意只好乱猜,请求出该考生:
(Ⅰ)得50分的概率;
(Ⅱ)设该考生所得分数为ξ,求ξ的数学期望.
设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且∠AOP=manfen5.com 满分网,∠AOQ=α,α∈[0,π).
(Ⅰ)若点Q的坐标是 (m,manfen5.com 满分网),求cos(manfen5.com 满分网)的值;
(Ⅱ)设函数manfen5.com 满分网,求f(a)的值域.
共1028964条记录 当前(81300/102897) 首页 上一页 81295 81296 81297 81298 81299 81300 81301 81302 81303 81304 81305 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.