在极坐标系中,圆C:ρ2+k2cosρ+ρsinθ-k=0关于直线l:θ=(ρ∈R)对称的充要条件是( ) A.k=1 B.k=-1 C.k=±1 D.k=0 |
|
在平面直角坐标系中,i,j分别是与x轴、y轴正方向同向的单位向量,O为坐标原点,设向量=2i+j,=3i+kj,若A,O,B三点不共线,且△AOB有一个内角为直角,则实数k的所有可能取值的个数是( ) A.1 B.2 C.3 D.4 |
|
若关于x的方程|ax-1|=2a(a>0,a≠1)有两个不等实根,则a的取值范围是( ). A.(0,1)∪(1,+∞) B.(0,1) C.(1,+∞) D.(0,) |
|
设l、m、n表示不同的直线,α、β、γ表示不同的平面,给出下列4个命题: ①若m∥l,且m⊥α,则l⊥α; ②若m∥l,且m∥α,则l∥α; ③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n; ④若α∩β=m,β∩γ=l,α∩γ=n,且n∥β,则m∥l. 其中正确命题的个数是( ) A.1 B.2 C.3 D.4 |
|
已知集合A={1,2,a-1},B={0,3,a2+1},若A∩B={2},则实数a的值为 ( ) A.±1 B.1 C.-1 D.0 |
|
设函数f(x)=x-a(x+1)ln(x+1),(x>-1,a≥0) (Ⅰ)求f(x)的单调区间; (Ⅱ)当a=1时,若方程f(x)=t在上有两个实数解,求实数t的取值范围; (Ⅲ)证明:当m>n>0时,(1+m)n<(1+n)m. |
|
设椭圆C:的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且. (1)求椭圆C的离心率; (2)若过A、Q、F2三点的圆恰好与直线l:相切,求椭圆C的方程; (3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由. . |
|
已知数列an是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足an2=S2n-1,n∈N*.数列bn满足,Tn为数列bn的前n项和. (1)求a1、d和Tn; (2)若对任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求实数λ的取值范围; (3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由. |
|
根据上表信息解答以下问题: (1)从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f(x)=x2-ηx-1在区间(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P; (2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ. |
|||||||||||
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点. (I)证明:CD⊥AE; (II)证明:PD⊥平面ABE; (III)求二面角A-PD-C的大小. |
|