已知集合U=R,A={x|x2-5x+6≥0},那么∁UA=( ) A.{x|x<2或x>3} B.{x|2<x<3} C.{x|x≤2或x≥3} D.{x|2≤x≤3} |
|
用a,b,c,d四个不同字母组成一个含n+1(n∈N+)个字母的字符串,要求由a开始,相邻两个字母不同.例如n=1时,排出的字符串是ab,ac,ad;n=2时排出的字符串是aba,abc,abd,aca,acb,acd,ada,adb,adc,…,如图所示.记这含n+1个字母的所有字符串中,排在最后一个的字母仍是a的字符串的种数为an. (1)试用数学归纳法证明:; (2)现从a,b,c,d四个字母组成的含n+1(n∈N*,n≥2)个字母的所有字符串中随机抽取一个字符串,字符串最后一个的字母恰好是a的概率为P,求证:. |
|
某中学选派40名同学参加上海世博会青年志愿者服务队(简称“青志队”),他们参加活动的次数统计如表所示.
(Ⅱ)从“青志队”中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ. |
|||||||||
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C截得的线段长度. |
|
(选修4-2:矩阵与变换) 已知矩阵A=,若矩阵A属于特征值6的一个特征向量为α1=,属于特征值1的一个特征向量为α2=.求矩阵A,并写出A的逆矩阵. |
|
已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”. (1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式; (2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由; (3)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围. |
|
对于数列{an},定义数列{an+1-an}为{an}的“差数列”. (I)若{an}的“差数列”是一个公差不为零的等差数列,试写出{an}的一个通项公式; (II)若a1=2,{an}的“差数列”的通项为2n,求数列{an}的前n项和Sn; (III)对于(II)中的数列{an},若数列{bn}满足anbnbn+1=-21•28(n∈N*),且b4=-7. 求:①数列{bn}的通项公式;②当数列{bn}前n项的积最大时n的值. |
|
已知椭圆和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B. (1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e; (ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围; (2)设直线AB与x轴、y轴分别交于点M,N,求证:为定值. |
|
如图,在一条笔直的高速公路MN的同旁有两个城镇A、B,它们与MN的距离分别是akm与8km(a>8),A、B在MN上的射影P、Q之间距离为12km,现计划修普通公路把这两个城镇与高速公路相连接,若普通公路造价为50万元/km;而每个与高速公路连接的立交出入口修建费用为200万元.设计部门提交了以下三种修路方案: 方案①:两城镇各修一条普通公路到高速公路,并各修一个立交出入口; 方案②:两城镇各修一条普通公路到高速公路上某一点K,并在K点修一个公共立交出入口; 方案③:从A修一条普通公路到B,再从B修一条普通公路到高速公路,也只修一个立交出入口.请你为这两个城镇选择一个省钱的修路方案. |
|
在直角梯形PBCD中,,BC=CD=2,PD=4,A为PD的中点,如下左图.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且,M,N分别是线段AB,BC的中点,如右图. (1)求证:SA⊥平面ABCD; (2)求证:平面AEC∥平面SMN. |
|